

1

IoT Edge computing extension for Live Objects

First Step Tutorial

2

IoT use cases require cloud platforms to collect, store and manage data & devices, and to

give a service view to users. But more and more industry, building, energy need treatments

close to the devices, to provide short feedback loops, filtering and/or local data

containment: what is called Edge treatment.

This tutorial describes how to interact with temperature Modbus end-devices (sensors), with

a first level of treatments at the Edge. For this purpose Technilog Dev I/O, software was

used. For data management and device management it was decided to use the Cloud

platform - Orange IOT platform Live Objects.

Table of Content

1 Technilog and Orange solutions to address Edge+Cloud needs ... 4

2 Resources used ... 5

3 Installation .. 6

4 Configuration .. 8

4.1 Open predefined project .. 8

4.2 Our predefined project configuration ... 9

4.3 MQTT Interfaces .. 10

4.4 XML Configuration ... 10

4.5 Run DEV I/O Server .. 11

4.6 Enabling of OPC UA Server .. 11

5 Exchanging data from device to Live Objects .. 13

5.1 ModbusPal Simulator .. 13

5.2 New end-devices in DEV I/O ... 14

5.2.1 Add new Modbus entity in DEV I/O ... 14

5.2.2 Configure exchange data channel ... 16

5.2.3 Modbus End device Auto Configuration .. 18

5.2.4 Manage end-device ... 19

5.3 Edge Feature ... 19

5.3.1 Data Aggregation ... 19

5.3.2 Storage .. 20

5.3.3 Variables .. 20

5.3.4 Data scheduling ... 20

5.3.5 Alarms .. 21

5.4 Management Features .. 22

5.4.1 Remote access – RDP .. 22

5.4.2 OPC UA – Modify values ... 22

5.5 Integration with Live Object (LO) ... 24

6 Appendix A ... 25

3

4

1 Technilog and Orange solutions to address

Edge+Cloud needs

Technilog propose a .Net based IoT software middleware solution called Dev I/O that can

be based on the Edge with the purpose of management and data aggregation.

 Dev I/O is a multi-protocol middleware software which harnesses the different

manufacturer communication channels. It allows for unifying data exchange between

cloud services (e. g. Live Objects) and IoT devices. Dev I/O uses open, secure,

standardized protocols. It is an OPC UA server, using Web services and databases.

Dev I/O consists of three separate sub-applications.

o Dev I/O Studio - tool dedicated to manual configuration

o Dev I/O server - handles exchanges between applications (e.g. via OPC) and

equipment

o Dev I/O XML Configuration module - tool dedicated to automatic equipment

configuration

Dev I/O is integrated with Live Objects solution.

 Live Objects (LO) is Orange IoT management cloud platform for data and devices. It

provides(through web portal and APIs), functionalities to collect, store, transform and

display data. It aggregates mentioned data through API to business applications.

Another features enabled through its web portal are APIs provisioning and

management of end devices.

Rolled-out architecture, combining Technilog and Orange solutions

5

2 Resources used

For this tutorial we have installed Dev I/O on both physical and virtual environment using

Windows. We have used the Dev I/O with a demonstration license, therefore some

components may differ under the production license.

This solution is Windows based thus, the default requirement is:

 Microsoft operating system(32 and 64 bit editions):

o Windows XP

o Windows 7,

o Windows Server 2003,

o Windows Server 2008,

o Windows Server 2012.

More globally, installation of Dev I/O additionally requires:

 SQL Server Compact 4.0

 Microsoft .Net Framework 4.5.1

 For Windows 7 and earlier distributions – windows installer 4.5

 Administrator account

In our tutorial we have used additional tools:

 UA Expert (optional – used for Dev I/O data manipulation)

 ModbusPal Simulator

6

3 Installation

To follow our tutorial be sure that your machine fulfills the requirements defined in section 2.

To install all components (Dev I/O Server, Dev I/O Studio, Dev I/O Configuration XML) run

the setup_all.exe (as an administrator).

After running, the language selection window will pop up. User can choose two languages –

English or French. However, the English language is OS dependent, therefore to run English

distribution the Dev I/O must be installed on English distribution of Windows. If you are

running Windows with other language than English the French version of Dev I/O will be

installed (default). It was the case for us, therefore French screens appear in the rest of this

tutorial.

For the next few windows the typical installation will continue, until the Select Components

stage. Unless you’re sure that the available components are needed for you project choose

the Compact Installation.

Now the rest of components will install in normal Windows manner.

7

In our case the project included the Modbus protocol support. This package is installed

during the normal installation process. We have as well installed several additional tools to

simulate an equipment (ModbusPal simulator described in section 5.1) and to follow current

values through another stream than MQTT (OPC UA Expert). These tools are not mandatory

in a production customer context.

The last stage of installation is the license activation where user can either enter the

activation key and click apply or click quit to run the demonstration version.

8

4 Configuration

In this chapter we will discuss how to configure projects in Dev I/O with special

consideration of predefined project, as we have mainly worked with them. Technilog can

send to client a project, which is tailored support the customer needs e. g. certain protocol.
The received project is initially configured, however some properties may need to be

changed. More details about our predefined configurations can be found in section 4.2.

4.1 Open predefined project

Dev I/O allows user to run a predefined project. However, the project has to be in the right

path: Program Files (x86)/DevIO/Data/Bases. By running the project from a different source

(different catalog) possible errors may be encountered.

To open the predefined project, run the Dev I/O. Start program as an administrator Dev I/O

Studio Tray Icon (launch icon). Now right click the Dev I/O icon in the right bottom corner of

your screen and click Start Dev I/O Studio.

Click the Ouvrir projet to open the project. And choose the path to the .pro file.

9

The Dev I/O studio tool is used for manual configuration. However, this requires off-line

mode, the Dev I/O server should be turned off.

4.2 Our predefined project configuration

In the opened Dev I/O studio, take notice to the server tree on the left and especially to the

two components:

 Channel Interface - (“Interfaces canaux”) to configure physical or logical

communication channel (COM1 serial port, TCP I/P socket, port associated with the

modem.

 Exchange Interface – (“Interfaces d’echanges”) to configure end-device. Exchange

interfaces are based on model which defines the protocols behavior. To add a new

protocol it is required to contact Technilog support to receive the specific model.

In our case the default Dev I/O project was extended with two :

 Channel Interface: TCP1_Canal utilizing the TCP/IP communication with external
devices.
The following window will occur.

 Exchange Interface: Modbus driver enabling the communication with Modbus
devices.

To investigate above components right the element as on image below.

It is advised to don’t change Channel Interface component properties, because it may
cause errors.

10

4.3 MQTT Interfaces

Dev I/O allows to configure the MQTT interface. The MQTT parameters can be set under

server properties (right click server → properties).

4.4 XML Configuration

Part of Dev I/O configuration needs to be done in a XML file. For example the MQTT

interface configuration should be deployed in the same manner as on the image below.

Where some parameters could be modified. Those parameters are related to the specific

MQTT broker and the MQTT user properties.

 Username

 Password

 Certificate path

 Publish Topic

 Subscription Topic

11

In the XML file the simple logic can be applied to the performed actions. For example,

definitions of publish messages, or what variables/data from the end devices are about to

be sent to the external cloud.

In Appendix A the whole XML file enabling the bidirectional MQTT communication with the

Live Object. It contains definition of former mentioned parameters and a basic script logic

defining the behavior of Dev I/O. Which in this case is reaction for receiving Live Object

instructions.

The XML file can be placed in the following path:

C:\ProgramFiles(x86)\DevIO\Data\Bases\<Project_Name>

4.5 Run DEV I/O Server

In order to run Dev I/O server, one needs to run the “Dev IO Tray Icon” as an administrator.

Next be sure that Dev I/O Studio is running in the read only mode.

Right click the Dev I/O icon in the low right corner → Start Dev I/O on the Desktop →

Normal display mode.

In the scope of our usage, the Dev I/O server was running in console mode (with a

demonstration license – Normal display mode); in a production context, the Dev I/O server

may be running in different mode type.

4.6 Enabling of OPC UA Server

In Dev I/O Studio there is no possibility to write data on the connected end devices.

However, it can be done using an external applications. Such as a OPC UA Expert which

connects to the OPC server in Dev I/O. In order to do this, the OPC UA server in Dev I/O

must be configured properly.

Right click server → properties.

Find OPC element and enable the Serveur UA property.

12

If these actions are performed, an additional window with a link to the DEV I/O OPC UA

server will appear, after Dev I/O is started in normal mode.

13

5 Exchanging data from device to Live Objects

This chapter presents how to establish connections with IoT devices which uses Modbus

protocol. Just to inform, usage of Modbus protocol is not supported in basic Dev I/O

configuration. We were able to use this protocol due to the fact that it was predefined in our

project. To add Modbus protocol or any other extension contact Technilog support to

receive additional models.

5.1 ModbusPal Simulator

For ease of implementation and test, we use a Modbus Java based device simulator:

ModbusPal Simulator. To start with this simulator, be sure to have Java Runtime

Environment installed. Than download the ModbusPal and run the ModbusPal.jar file. If

everything is installed properly following GUI should pop up.

To add a new device, click the Add button - highlighted in red. Choose slave id - the same

as the unit.id chose in the Modbus driver. After adding a new slave new components should

be visible in the Modbus slave section.

https://sourceforge.net/projects/modbuspal/files/modbuspal/RC%20version%201.6b/

14

 Then click the eye icon in the new slave and click add. Set the range that contains

memory.address parameters set in the components of the channel in the driver.

 Be sure that you have opened port on which Modbus is working - default - 502. Finally,

click the run button available in the main panel and change the value of the desired address

as on figure above. In order to check if the connection works properly, in asset click the

Data section and observer whether the value of channel has changed.

More information: https://sourceforge.net/p/modbuspal/wiki/Home/

5.2 New end-devices in DEV I/O

There is a numerous ways to configure a new device in Dev I/O. The addition of new device

is strictly connected with a model, on which it is basing. For this reason, adding new

devices based on other protocols may look different. In this tutorial we will focus on adding

Modbus devices.

5.2.1 Add new Modbus entity in DEV I/O
To add a new Modbus entity to Exchange Interface inside the Dev I/O studio right click the

IE_Modbus and choose Nouvel equipment. The following window should pop up:

https://sourceforge.net/p/modbuspal/wiki/Home/

15

In this panel the name and the address of the new device can be added. You need to

change the canal of the interface by clicking the highlighted Canal_TCP1 and the right

arrow.

The properties of new added devices can be checked and investigated by checking

properties.

To inspect it, click right mouse button on it a choose Properties.

In this panel user can model the Modbus device by changing its parameters. In example in

the Arguments section the slave number can be define with –DLL TCPIP –LOG -<Your slave

number>.

16

The interface can be as well inspected by double clicking on it.

In this panel the IP Address as well as source port can be changed.

5.2.2 Configure exchange data channel
To add the new Modbus data be sure that you have configured end device in priori defined

(5.2.1) exchange interface. For example to add the new holding register, you need to right

click the blocs property and choose the Bloc Holding Registers.

After clicking it, the detailed of the bloc can be configured.

17

In this panel the parameters of data Bloc can be defined. The most important one is the

Adresse parameter, where the range of future used address can be defined e.g. to define

twenty holding registers from 1 to 20 type H0/20.

In order to add a new data parameter, list the bloc properties by right clicking the Bloc

number

Inside of the new opened panel, right click the empty space and choose the Nouvelle

donnee parameter.

The following panel will pop up:

18

Where the new value parameters can be defined. The most important one is the Adresse ,

here the Modbus channel number can be defined [W<Number of a channel>] which is in

included in previously defined range.

5.2.3 Modbus End device Auto Configuration
XML Configuration Tool is an alternative method basing on importing configuration files. The

formats included in Dev I/O are those produced by tools supplied by the manufacturer.

With this interface, configuration can be performed during operation.

Before using the XML Configuration Tool be sure to run the Dev I/O server, so the changes

will be applied. The procedure of adding new device may vary for different protocols. We

mainly focused on the Modbus protocol. Therefore we will show how the configuration can

be performed using it. In order to add new Modbus end device the user needs to have the

Modbus .csv model file. In this file the data blocs and bloc addresses can be defined as well

as the format of the data and the repeat period time.

For adding new device we advise to use the Dev I/O – XML Configuration Tool. On the

image below in the red section, in the Tool section the CSVImport must be chosen. For the

Model variable choose Modbus parameter. Than choose the csv file, in the file to import.

Now apply the IP number of your Modbus device and the port number on which it is

working. Finally set the name of the new equipment in the low left corner and click the

import button in the low right corner.

Now in Dev I/O Studio to observe the changes user needs to click the import complete

button. If import was unsuccessful, check if the Dev I/O server is running.

19

If the device is added properly you should be able to observe the new interface.

5.2.4 Manage end-device

The device data can be managed either directly form the Dev I/O or with help of the OPC

UA (described in 5.4.2).

5.3 Edge Feature

In this chapter the edge feature of Dev I/O are presented.

5.3.1 Data Aggregation
In this category we can distinguish:

 Mathematical Operations

While receiving or sending data, in the entity we can define the simple equations (in the

section highlighted in red), which can be performed on both received and sent data.

 Data Families

 Dev IO entities can be assigned to an event family (green section above). The event family

can have a value from 0 to 255.

 0: associated with "never", the value associated with the variable is never

transmitted to the application (OPC UA client, etc.),

20

 255: associated with "always", the value associated with the variable is transmitted

to the application concerned (even if the value has not changed),

 1 to 254 (253 is associated with “alarms”) : the value associated with a variable is

transmitted to the application only on the change of values or states.

5.3.2 Storage
To store Dev I/O data an external DBMS (Database Management System) needs to be

installed.

5.3.3 Variables
Each device has a predefined internal variable that allows to perform the certain actions on

the device e. g. turning on and turning off. Variables are described on the figure below.

5.3.4 Data scheduling
Dev I/O allows to schedule the connection to one or a set of equipment’s or to schedule

data change. It can be done in the Taches section of Dev I/O studio.

21

But, in a general way it is advised to use the Dev I/O internal variables (command variables:

_CNX_CMD, _IOCTRL, _Polling and status variables: _CNX, _IOCTRL_State) and implement

these functions at the applicative level.

5.3.5 Alarms
Dev I/O gives ability to create alarms in case the certain value will be obtained or any

abnormal will occur. Dev I/O doesn’t manage notifications such as : email, SMS. To

set an alarm, follow the image below.

In the alarm panel it is possible to define the desired parameters.

To choose, which value should be observed click the source button in blue:

22

5.4 Management Features

In this chapter the management feature of Dev I/O are presented

5.4.1 Remote access – RDP
For the remote access we have used RDP due to the fact that the that Dev I/O doesn’t offer

remote configuration capabilities. When it comes to devices, they can be managed using

the OPC UA client or MQTT.

5.4.2 OPC UA – Modify values
When Dev I/O is working and it is connected with devices the value of devices can be

manipulated. First enable the OPC UA server properties in according to 4.5.

Than set the READ ONLY option in Dev I/O studio and start the Dev I/O server. If the

OPCUA Server is working properly the following window should be seen. Now copy the

Server Endpoint URL.

Open the UA Expert https://www.unified-automation.com/downloads/opc-ua-clients.html .

In the panel in the left top corner right click the Server section and click Add. Now in

window that have just opened click the advanced button and paste the previously copied

URL in the Endpoint URL section.

https://www.unified-automation.com/downloads/opc-ua-clients.html

23

After adding new connect to it by right clicking the name of a server that you want to

connect and click connect.

Now in the Addresses Space on the left side of the screen you should see the parameters of

your configured Dev I/O interfaces,

In order to modify them drag and drop the components to the middle of the application and

click the value parameter of the channel. The desired value can be simply typed in.

24

5.5 Integration with Live Object (LO)

The bidirectional integration can be achieved with help of the MQTT forwarder. In can be

configured in the:

C:\ProgramFiles(x86)\DevIO\Data\Bases\<Project_Name>\DevIOMqttServer.xml

In this file described in Appendix A, the integration was prepared by the Technilog

according to the LO MQTT interface. The communication with Live Object is achieved

thanks to appropriate configuration of the data structure which is send and receive by

usage of LO connector mode.

From the user perspective, the only parameter that we have to changed is the API Key of

the Live Object account. API key should have External connector or Customized profile.

By changing the password parameter Live Object account can be connected to the Dev I/O

instance. To complete the Live Object integration, you need to open the server properties as

follows.

Then find the MQTT properties right click the Server and open properties.

Then put values as on the image below.

The bi-directional integration is complete and it is now possible to send data from devices

connected with Dev I/O to LO.

25

6 Appendix A

<?xml version="1.0" encoding="utf-8"?>

<!-- Orange mode connector - api-key - -->

<!-- certificat Orange à placer dans le répertoire du .pro -->

<DevIOMqttServer server="DevIOMQTTServer" user ="connector"

password="2ab2513fab9849248453c687b0bc83f4" certStore="%PATH_BASE%\.."

caCertificate="OrangeCA" clientCertificate="" clientPrivateKey=""

cleanSession="true" minInterval="1" maxInterval="60" ack="false"

keepaliveInterval="10" logFlush="false">

 <Model name="registerEqt"

publishTopic="connector/v1/nodes/$EquipmentName/status" qos="0" PoD="10">

<PublishMessage>{"status":"ONLINE","capabilities":{"command":{"available":t

rue}}}</PublishMessage>

 <Date format = "ISO" msSeparator ="."/>

 <Ignore equipmentName="_MODELE"></Ignore>

 </Model>

 <Model name="unregisterEqt"

publishTopic="connector/v1/nodes/$EquipmentName/status" qos="0" PoD="10">

<PublishMessage>{"status":"OFFLINE","capabilities":{"command":{"available":

true}}}</PublishMessage>

 <Date format = "ISO" msSeparator ="."/>

 <Ignore equipmentName="_MODELE"></Ignore>

 </Model>

 <Model name="data" publishTopic="connector/v1/nodes/$EquipmentName/data"

qos="0" PoD="10">

 <!-- Valeurs possibles : $Year, $Month, $Day, $Hours, $Minutes,

$Seconds, $Millisecs, $Timestamp, $Date, $Value, $ObjectType,

 $State, $Type, $IsHisto, $EquipmentName,

$BlocName, $DataName, $ServerName, $Now, $NowISO -->

 <!-- $Date : Représente le format de la date dans la balise Date -->

<PublishMessage>{"timestamp":"$Date","value":{"$DataName":"$Value"}}</Publi

shMessage>

 <Date format = "ISO" msSeparator ="."/>

 <Ignore equipmentName="_MODELE"></Ignore>

 </Model>

 <SubscribeTopics>

 <Topic type="Commands" name="connector/v1/requests/command" qos="1" >

 <Script>

 function tprint (tbl, indent)

 if not indent then indent = 0 end

 for k, v in pairs(tbl) do

 formatting = string.rep(" ", indent) .. k .. ": "

 if type(v) == "table" then

 print(formatting)

 tprint(v, indent+1)

 elseif type(v) == 'boolean' then

 print(formatting .. tostring(v))

 else

26

 print(formatting .. v)

 end

 end

 end

 tprint(incoming_message,2)

 devio = DevIO.new()

 local msgId = incoming_message.id;

 local equipmentName = incoming_message.nodeId;

 local request = incoming_message.value.req;

 local ackMode = incoming_message.ackMode;

 local dataArray = {}

 local count = 0

 for k, v in pairs(incoming_message.value.arg) do

 local element = {dataName=k, dataValue=v}

 table.insert(dataArray, element)

 count = count + 1

 end

 devio:writeData(equipmentName, dataArray, count > 1)

 if ackMode == "APPLICATIVE" then

 out_msg = {id = msgId, nodeId = equipmentName}

 -- tprint(out_msg,2)

 out_topic = "connector/v1/responses/command"

 return out_topic, out_msg

 end

 </Script>

 </Topic>

 </SubscribeTopics>

 <Ignore name = "_CNX" />

 <Ignore name = "_CNX_IN" />

 <Ignore name = "_CNX_OUT" />

 <Ignore name = "_CNX_CMD" />

 <Ignore name = "_CNX_CHANNEL" />

 <Ignore name = "_IOCTRL" />

 <Ignore name = "_IOCTRL_STATE" />

 <Ignore name = "_State" />

 <Ignore name = "_DATA_UPDATED" />

 <Ignore name = "_HISTO_PENDING" />

 <Ignore name = "_SERVER_WATCHDOG" />

</DevIOMqttServer>

